Roles of YqjH and YqjW, homologs of the Escherichia coli UmuC/DinB or Y superfamily of DNA polymerases, in stationary-phase mutagenesis and UV-induced mutagenesis of Bacillus subtilis.

نویسندگان

  • Huang-Mo Sung
  • Gabriel Yeamans
  • Christian A Ross
  • Ronald E Yasbin
چکیده

YqjH and YqjW are Bacillus subtilis homologs of the UmuC/DinB or Y superfamily of DNA polymerases that are involved in SOS-induced mutagenesis in Escherichia coli. While the functions of YqjH and YqjW in B. subtilis are still unclear, the comparisons of protein structures demonstrate that YqjH has 36% identity to E. coli DNA polymerase IV (DinB protein), and YqjW has 26% identity to E. coli DNA polymerase V (UmuC protein). In this report, we demonstrate that both YqjH and the products of the yqjW operon are involved in UV-induced mutagenesis in this bacterium. Furthermore, resistance to UV-induced damage is significantly reduced in cells lacking a functional YqjH protein. Analysis of stationary-phase mutagenesis indicates that absences of YqjH, but not that of YqjW, decreases the ability of B. subtilis to generate revertants at the hisC952 allele via this system. These data suggest a role for YqjH in the generation of at least some types of stationary-phase-induced mutagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Strategies for Translesion Synthesis in Bacteria

Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but...

متن کامل

Y-family DNA polymerases in Escherichia coli.

The observation that mutations in the Escherichia coli genes umuC+ and umuD+ abolish mutagenesis induced by UV light strongly supported the counterintuitive notion that such mutagenesis is an active rather than passive process. Genetic and biochemical studies have revealed that umuC+ and its homolog dinB+ encode novel DNA polymerases with the ability to catalyze synthesis past DNA lesions that ...

متن کامل

Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily.

To understand the mechanisms underlying mutagenesis in eukaryotes better, we have cloned mouse and human homologs of the Escherichia coli dinB gene. E. coli dinB encodes DNA polymerase IV and greatly increases spontaneous mutations when overexpressed. The mouse and human DinB1 amino acid sequences share significant identity with E. coli DinB, including distinct motifs implicated in catalysis, s...

متن کامل

An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus

DNA polymerases of the Y-family, such as Escherichia coli UmuC and DinB, are specialized enzymes induced by the SOS response, which bypass lesions allowing the continuation of DNA replication. umuDC orthologs are absent in Caulobacter crescentus and other bacteria, raising the question about the existence of SOS mutagenesis in these organisms. Here, we report that the C.crescentus dinB ortholog...

متن کامل

All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis.

Most organisms contain several members of a recently discovered class of DNA polymerases (umuC/dinB superfamily) potentially involved in replication of damaged DNA. In Escherichia coli, only Pol V (umuDC) was known to be essential for base substitution mutagenesis induced by UV light or abasic sites. Here we show that, depending upon the nature of the DNA damage and its sequence context, the tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 7  شماره 

صفحات  -

تاریخ انتشار 2003